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Orthogonal Latin Squares

A Latin square of order (or, side) s is an s ⇥ s matrix (array) with
entries from a set of s � 2 distinct symbols (or, letters) such that
each symbol appears in each row and each column precisely once.
Two Latin squares of the same order are said to be orthogonal to
each other if, when any of the squares is superimposed on the
other, every ordered pair of symbols appears exactly once.
For example, consider the following pair of Latin squares of order
s = 4:

L1 =

A C D B
B D C A
C A B D
D B A C

, L2 =

↵ � � �
� � ↵ �
� � � ↵
� ↵ � �

.



Superimposing L2 over L1, one gets the following arrangement:

L =

A↵ C� D� B�
B� D� C↵ A�
C� A� B� D↵
D� B↵ A� C�

.

Clearly, L1 and L2 are orthogonal to each other, because in L, each
Latin alphabet appears with each Greek alphabet exactly once.
An arrangement like L is now called an Eulerian square, named
after the legendary mathematician Leonhard Euler (1707–1783),
who studied such objects in 1782 and also made a famous
conjecture about their existence. Eulerian squares are also called
Graeco-Latin squares in Statistics literature.



If in a set of Latin squares every pair is orthogonal, then the set is
said to form a set of mutually orthogonal Latin squares (MOLS).
The number of MOLS of order s is bounded above by s � 1 and if
this upper bound is attained, we say that there is a complete set of
MOLS.
A complete set of MOLS of order s can be constructed if s is a
prime or a prime power, i.e., if s = pq where p is a prime number
and q � 1 is an integer. Such a complete set of MOLS was
constructed by R. C. Bose (1938) and independently, by W. L.
Stevens (1939).
It is not known yet whether the above condition, viz., s is a prime
or prime power for the existence of a complete set of MOLS of
order s, is necessary as well.



Clearly, in order to construct an Eulerian square, one needs a pair
of orthogonal Latin squares. One of the most intriguing questions
regarding orthogonal Latin squares is:

Can one construct a pair of orthogonal Latin squares of order s for
every integer s > 2?

(One can easily see that such a pair does not exist for s = 2.)



In 1779, Euler started looking at the problem of finding Eulerian
squares of every order. In fact, in his 1779 paper (which was
published in 1782), Euler was able to construct an Eulerian square
of every order s, where s is (i) either an odd integer or, (ii) a
multiple of 4. Thus, the existence of Eulerian squares of all orders
s where s ⌘ 0, 1, or 3 (mod 4) was settled by Euler in 1782. The
only case not settled till then was for orders s ⌘ 2 (mod 4). This
brings us to the problem of 36 o�cers.



The Problem of 36 O�cers

Here is the statement of the problem.

There are 36 army o�cers, 6 from each rank and 6 from each
regiment. Is it possible to arrange these 36 o�cers in a 6⇥ 6
square arrangement such that each rank and each regiment shows
up in each row and each column?
How did this problem arise in the first place? Folklore has the
following ‘explanation’:

“It appears that the Emperor was to visit a garrison town in which
six regiments were quartered and the commandant took into his
head to arrange 36 o�cers in a square, one of each rank from each
regiment, so that, whichever row or column the Emperor walked
along, he would meet one o�cer of each of the six ranks and one
from each of the six regiments”.



In the IMS Bulletin of 1987, at the initiative of the then Editor,
George Styan, a prize was o↵ered for the first correct (or most
plausible) answers to the following questions:

• Who was the Emperor?
• Which was the garrison town?
• Who was the commandant?

Three responses were received to these questions and the prize was
given to S. C. Pearce who stated that Joseph II was the Emperor!
The garrison town was probably St. Petersburg. Nothing is known
about the commandant!



The commandant, of course, had set himself an impossible task as,
the solution to the problem is provided by a 6⇥ 6 Eulerian square,
which was later shown to be non-existent. Euler (1782) himself
could not find an Eulerian square of order 6; he proceeded to
‘show’ the non-existence of such a square using an argument that
is not entirely correct in method but correct in its conclusion.
Having failed to construct an Eulerian square of order 6, Euler
went on to make the following conjecture.

Euler’s Conjecture: There does not exist a pair of orthogonal
Latin squares of order s ⌘ 2(mod 4), or equivalently, no Eulerian
square of order s ⌘ 2 (mod 4) exists.



G. Tarry in 1900, by an exhaustive and laborious search showed the
impossibility when s = 6. A shorter proof of the non-existence of
an Eulerian square of order 6, based on coding theory was given by
D. R. Stinson (1984). J. Peterson (1901) and P. Wernicke (1910)
made erroneous attempts to prove Euler’s conjecture as did
MacNeish (1922). The arguments used by Peterson and MacNeish
were shown to be false by F. W. Levi (1942) and the falsity of
Wernicke’s argument was shown by MacNeish (1922). Two leading
statisticians, R. A. Fisher and F. Yates, in 1934 published a list of
all possible Latin squares of order 6 and concluded as below:

(Fisher & Yates, 1934) Euler’s conclusion that no Graeco-Latin
6⇥ 6 square exists is easily verified from the 12 types of 6⇥ 6
Latin squares exemplified in this paper.



The MacNeish-Mann Conjecture

For an integer s, let N(s) denote the maximum number of MOLS
of order s. Then, as seen earlier, N(s) = s � 1, if s is a prime or a
prime power. A challenging problem is to determine the value of
N(s) when s is neither a prime nor a prime power. One of the
earliest results in this direction is due to H. F. MacNeish (1922);
this was generalized somewhat and put on an algebraic foundation
by H. B. Mann (1942). Let s = pn11 pn22 . . . pnmm be the prime-power
decomposition of s, where p1, . . . , pm are distinct primes and
n1, . . . , nm are positive integers. Define

n(s) = min{pn11 , pn22 . . . , pnmm }� 1.

MacNeish (1922) showed that N(s) � n(s). MacNeish went
further to conjecture that n(s) is also the upper bound on N(s) and
therefore, N(s) = n(s). This is the MacNeish-Mann conjecture.



Note that had the MacNeish-Mann conjecture been true, it would
have shown the truth of Euler’s conjecture as, by the
MacNeish-Mann conjecture, N(s) = 1 if s ⌘ 2 (mod 4). However,
E. T. Parker (1959a) showed that the MacNeish-Mann conjecture
is false.

The first result casting serious doubts on the truth of Euler’s
conjecture is due to R. C. Bose and S. S. Shrikhande (1959) who
were able to construct an Eulerian square of order s = 22. In the
same year, Parker (1959b) proved another result, an application of
which yielded a pair of orthogonal Latin squares of order 10 (or, an
Eulerian square of order 10). This is shown next, where the
symbols of both the Latin squares are 0, 1, 2, . . . , 9.



A Pair of Orthogonal Latin squares of order 10

00 47 18 76 29 93 85 34 61 52
86 11 57 28 70 39 94 45 02 63
95 80 22 67 38 71 49 56 13 04
59 96 81 33 07 48 72 60 24 15
73 69 90 82 44 17 58 01 35 26
68 74 09 91 83 55 27 12 46 30
37 08 75 19 92 84 66 23 50 41
14 25 36 40 51 62 03 77 88 99
21 32 43 54 65 06 10 89 97 78
42 53 64 05 16 20 31 98 79 87

.

The above Eulerian square of order 10 was first obtained by Parker
using a UNIVAC computer and appears to be the first attempt to
use computers for solving a combinatorial problem.



Once Eulerian squares of orders 10 and 22 were found, more
doubts about the validity of Euler’s conjecture arose as both 10
and 22 are congruent to 2 mod 4. Further results casting serious
doubts on the truth of Euler’s conjecture were provided by Bose
and Shrikhande (1960). That the Euler’s conjecture is false for all
orders s = 4t + 2, t > 1 was shown by Bose, Shrikhande and
Parker (1960). Their result is stated below.

There exists at least two MOLS of side s ⌘ 2 (mod 4), s 6= 6.

Coupling the above result with those of Euler (1782), one has the
following result.

There exists at least two MOLS of side s > 2, s 6= 6.



The methods of Bose, Shrikhande and Parker to prove the falsity
of Euler’s conjecture used, among other things, a combinatorial
arrangement called balanced incomlete block designs. Let V be a
finite set of v objects (or, treatments, using the terminology of
statistical design of experiments) and B, a collection of k-subsets
of V, where 2  k < v ; these subsets are called blocks. The pair
(V,B) is a balanced incomplete block (BIB) design if (i) every
treatment appears in r blocks and (ii) each pair of treatments
occurs together in � blocks. If |B| = b, where | · | denotes the
cardinality of a set, then the integers v , b, r , k ,� are called the
parameters of a BIB design.



Although BIB designs were first used as experimental designs in
1936, such objects were known even in the 19th century. Kirkman
(1850) solved the following problem, originally proposed by
Woolhouse (1844):

A school mistress is in the habit of taking 15 girls of her school for
a daily morning walk in 5 batches of 3 girls each, so that each girl
has 2 companions. Is it possible to find an arrangement so that for
7 consecutive days, no girl walks with any of her companions in
any batch more than once?
The solution of the above problem (called the Kirkman’s schoolgirl
problem) has a one-one correspondence with the solution of a BIB
design and such a BIB design is also called a Kirkman Triple
System, KTS(15). A KTS(15) is shown next, where the schoolgirls
are labeled 1, 2, . . . , 15:



Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
1,6,11 1,8,10 1,3,9 1,2,5 2,3,6 1,7,14 1,12,13
2,7,12 2,9,11 2,13,14 3,10,12 5,7,13 3,5,11 2,4,10
3,8,13 3,4,7 4,5,8 4,11,13 8,9,12 4,6,12 5,6,9
4,9,14 5,12,14 6,7,10 6,8,14 10,11,14 9,10,13 7,8,11
5,10,15 6,13,15 11,12,15 7,9,15 1,4,15 2,8,15 3,14,15

It is easily seen that the above plan is a BIB design with
parameters v = 15, b = 35, r = 7, k = 3,� = 1 when triplets of
girls are treated as blocks. A solution of Kirkman’s Triple System
KTS (m) for all m ⌘ 3 (mod 6) was provided by Raychoudhuri and
Wilson (1971).



J. Steiner (1853) proposed the problem of arranging n objects in
triplets (called Steiner’s triple systems) such that every pair of
objects appears in exactly one set. We now recognize that such
triples are in fact BIB designs with block size 3.



A Slice of History

The literature on Latin squares is at least three centuries old, one
of the earliest references being a monograph Koo-Soo-Ryak by Choi
Seok-Jeong (1646–1715), who used orthogonal Latin squares of
order 9 to construct a magic square and stated that he cannot find
orthogonal Latin squares of order 10. Recall that a (traditional)
magic square of order n � 2 with magic constant e = n(n2 + 1)/2
is an n ⇥ n matrix A = (aij) with entries 1, 2, . . . , n2, such that:
(i)

Pn
i=1 aij = e, 1  j  n,

(ii)
Pn

j=1 aij = e, 1  i  n,
(iii)

Pn
i=1 aii = e, and

(iv)
Pn

i=1 ai ,(n�i+1) = e.



Orthogonal Latin squares can be used to construct magic squares.
As an example, consider the following pair of orthogonal Latin
squares of order 4, written with symbols 0, 1, 2, 3:

L1 =

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

, L2 =

0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

.

Superimposing one square over the other, one gets the following
square:

L =

00 11 22 33
23 32 01 10
31 20 13 02
12 03 30 21



Replacing the element (ij) of L by 4i + j + 1, one obtains the
following magic square of order 4 (e = 34):

M =

1 6 11 16
12 15 2 5
14 9 8 3
7 4 13 10

Euler’s interest in this area also probably originated from the
connection of Eulerian squares to magic squares. Euler, in a paper
entitled “De quadratis magicis” and read before the Academy of
Sciences at St. Petersburg on October 17, 1776, constructed
magic squares of orders 3, 4 and 5 from orthogonal Latin squares.
He could not construct an Eulerian square of order 6 which
prompted him to make his conjecture.



For over a century, no progress was made on Euler’s conjecture,
though it was not totally neglected by mathematicians of that
time. In 1842, Gauss and Schumacher corresponded about a work
of Clausen, who apparently established the impossibility of an
Eulerian square when s = 6 and conjectured the impossibility when
s = 2 (mod 4). This work was never published!



Latin square amulets go back to medieval Islam (c1200) and a
magic square of the famous Arab sufi, Ahmad ibn Ali ibn Yusuf
al-Buni indicates the knowledge of a pair of orthogonal Latin
squares of order 4. A new edition of J. Ozanam’s four-volume
treatise “Récréations mathématiques et physiques ...”, published in
1723 had the following puzzle:



There are 16 playing cards of four denominations, ace (A), king
(K), queen (Q) and jack (J) from each of the four suits, spade,
heart, diamond and club. Is it possible to arrange these 16 cards in
a 4⇥ 4 square such that each denomination and each suit appears
in each row, each column and (additionally) on the two diagonals
exactly once?



Here is a solution to this problem.

A| Q� J� K�
K� J� Q| A�
Q� A� K� J|
J� K| A� Q�

It is not hard to see that the above solution is given by the
Eulerian square of order 4, shown in the beginning of the talk.



In 1896, E. H. Moore published an influential paper “Tactical
Memoranda I–III” in the American Journal of Mathematics. In
Memorandum II of this paper, Moore used finite fields of order s to
construct a complete set of MOLS of order s, a result rediscovered
much later by Bose (1938) and independently by Stevens (1939).
Clearly, neither Bose nor Stevens were aware of the work of Moore.



The final results of Bose, Shrikhande and Parker on the falsity of
Euler’s conjecture for all orders s = 2 (mod 4), s > 6, were
announced in the annual meeting of the American Mathematical
Society, held in New York during the last week of April, 1959. This
major result was reported on the front page of the Sunday edition
of the New York Times of April 26, 1959 with the header

Major Mathematical Conjecture Propounded 177 Years Ago Is
Disproved.

The New York Times in the report also made the following remark:

The three mathematicians who finally cracked the problem are now
known among their colleagues as Euler’s Spoilers.
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Wernicke, P. (1910). Das problem der 36 o�ziere.
Deutsche Math.-Ver. 19, 264–267.

Woolhouse, W. S. B. (1844). Prize question 1733.
Lady’s and Gentleman’s Diary.


	Orthogonal Latin Squares
	The Problem of 36 Officers
	The MacNeish-Mann Conjecture
	A Slice of History

