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Abstract 
  In this paper we review some image segmentation methods based on mixture 
distributions. Here, it is considered that pixel intensities in each image region follow a 
probability distribution. The distribution may be platykurtic or mesokurtic or leptykurtic. 
The whole image is characterized by a probabilistic mixture model. The number of 
components (image regions) in each image is obtained through K-means/hierarchal 
clustering algorithm. The model parameters are estimated by deriving the updated 
equations of the EM algorithm. The segmentation of the image is done by maximizing 
the component likelihood. The performance of the different algorithms is studied by 
computing the segmentation performance metrics like, PRI, VOI, and GCE for five 
images randomly selected from Barkley image data set. The experimental results and 
comparative study show that these methods outperform the non-parametric methods. 

Keywords: Image segmentation, Mixture distributions, E.M. algorithm, Segmentation 
performance metrics. 
__________________________________________________________________________ 

1. Introduction 
  The optical appearance of something produced in a mirror or through a lens is known as 
image. The concept of digital image was found in literature as early as in 1920.In low level 
image analysis, the entire image is considered as a union of several image regions .In each 
image region the image data is quantized by pixel intensities. The pixel intensity z = f(x, y) 
for a given point (pixel ), z is a random variable, because of the fact that the brightness 
measured at a point in the image is influenced by various random factors like vision, lighting, 
moisture, environmental conditions etc. Digital image is a matrix, where each number 
represents the brightness at regularly spaced points in the image. These points are called 
pixels and the brightness value of a pixel is called its grey level. 

  The aim of image processing applications is to extract important features from image 
data from which a description, interpretation or understanding of the scene can be provided 
by the machine. Image analysis helps to find the relationship between the objects inside the 
image. The first step of image analysis is to divide the image into regions so that various 
features such as size, shape, color, texture can be measured, and these features in turn can be 
used as inputs for classification. Image analysis involves: (i) feature extraction, and (ii) 
segmentation. Image segmentation refers to decomposition of a scene into different 
components. Segmentation is a process of partitioning the image into non-intersecting regions 
such that each region is homogenous. Several Segmentation techniques have been developed 
and utilized for image analysis, but there is no unique segmentation procedure, which serve 
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all the situations. The uses of image segmentation are Image Understanding (content 
identification) and Image retrieval. Image Segmentation is extensively used in medical 
diagnostics, remote sensing, robotics, filming and video, industrial automation and animation 
(Jan Puzicha ,1999, Martin, 2001). 

  The image segmentation methods can be grouped into three categories, viz., 
(1) Histogram, Threshold and edge based methods, (2) Model based image segmentation 
methods, and (3) Image segmentation based on other methods (graph, neural networks, fuzzy 
logic, genetic algorithms, saddle points etc.). These methods can further be classified into two 
categories viz., parametric and non-parametric image segmentation methods. Parametric 
(model based) image segmentation methods are more efficient compared to the non-
parametric methods of segmentation. In model-based image segmentation, whole image is 
characterized by a finite mixture of probability distributions by ascribing a probability 
distribution to the pixel intensities of each image region (Figueiredo et al., 1999, Jacob, 
Goldberg, 2002, Lei et al., 2003, Pal and Pal, 1993) have mentioned that there is no unique 
image segmentation method which can serve all images. This is true, since the pixel 
intensities in each image region follow mesokurtic, leptykutric or platykurtic, symmetric or 
asymmetric distributions (Abhir Bhalerao and Roland Wilson, 2003). 

  In this article we discuss different image segmentation methods based on mixtures of 
different probability distributions which are used for analyzing several images. We also 
discuss the updated equations of the EM-algorithms associated with the finite mixture 
models. The performance of some image segmentation methods are also discussed 
(Unnikrishnan, et al., 2007). In conclusions a comparative study of different image 
segmentation methods is presented. 

2. Image Segmentation Algorithm 
For segmenting the image into image regions, we adopt the following steps after 
ascribing the suitable probability model to the feature of each image region.  

  Step 0) Identify a suitable probability model for the feature (pixel intensity) using 
criteria given for Pearsonian system of equations (Johnson et al., 1992). In this system 
consider a quadratic equation of the form  
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β2 > 3 then Type VII. 

  Step 1) Plot the histogram of the whole image. 

  Step 2) Obtain the initial estimates of the model parameters using clustering algorithm 
and moment estimates for each image region. 
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  Step 3) Obtain the refined estimates of the model parameters 2,i iµ σ  and iα  for i =1, 
2, … , K, by using the EM algorithm.  

  Step 4) Assign each pixel into the corresponding jth region (segment) according to the 
Maximum likelihood of the jth component Lj where, Lj is component likelihood function of jth 
region. 

3. Image Segmentation Method Based On Gaussian Mixture Model 
  Much emphasis is given for image analysis through finite Gaussian mixture model. In 
finite Gaussian mixture model each image region is characterized by a Gaussian distribution 
and the entire image is considered to be a mixture of these Gaussian components. Several 
researchers assumed that the whole image is characterized by Gaussian mixture model in 
which the pixel intensities of each image region follow a Gaussian distribution. Image 
segmentation methods based on Gaussian or Gaussian Mixture models were studied by 
Yamazaki. (1998), Jan Puzicha. (1999), Figureido et al. (1999), Farnoosh et al. (2008), Jacob 
et al. (2002), Permuter et al.  (2003), Yudi  Augusta (2003),   Blekas, et al. (2005), and others. 

  The probability density function of the pixel intensity of the image region which follows 
a Gaussian distribution is given by, 
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  The mean of the pixel intensities in the image region is µ  and variance of the pixel 

intensities in the image region is 2σ .Since the whole image is a collection of K image regions 
the pixel intensities in the whole image follows a Gaussian mixture model with Probability 
density function  
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  Usually the initialization of the parameters is done by segmenting the whole image into 
K image regions with K-means / hierarchal clustering and using the following initial estimates 
for each image regions as 

 iα = 1/K, for all i= 1,2….K, 

  iµ = Sample mean of the ith region, 

 
2  iσ =  Sample  variance of the ith region. 

 

4. Image Segmentation Method Based on New Symmetric Mixture Distribution 
  Seshashayee et al. (2011a), Srinivasa Rao et al. (2012) have used mixture of new 
symmetric distribution for image segmentation. To model the pixel intensities of the image 
region which are distributed as platykurtic symmetric distribution, it is assumed that the pixel 
intensities of the region follow a new symmetric distribution given by Srinivasa Rao, K, et al. 
(1997).The probability density function of the pixel intensity is given by 
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This distribution is symmetric aboutµ and the distribution function is 
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 is the distribution function of the standard normal variate. 

 The kurtosis of the distribution is β2 = 2.52 (4) 

The entire image is a collection of regions which are characterized by new symmetric 
distribution. Here, it is assumed that the pixel intensities of the whole image follows K  
component mixture of new symmetric distribution and its probability density function is of 
the form 
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where, K is number of regions, 0 ≤ iα  ≤ 1 are weights such that∑αi= 1 and 2( , , )if z µ σ  is as 
given in equation (4). αi is the weight associated with ith  region in the whole image.  

 
Estimation of the Model Parameters by EM Algorithm: 

The updated equations of the parameters in each image region are obtained for the 
EM algorithm as follows.  

The updated equation ofα  for ( l +1)th  iteration is  
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The updated equation of iµ  at ( l +1)th iteration is  
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The updated equation of 2
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5. Image Segmentation Method Based on Generalized New Symmetric Mixture 
Distribution 

Seshashayee, et al. (2011b) have used generalized new symmetric distribution and its 
mixture distribution in modeling the pixel intensities of an image. To model the pixel 
intensities of the image region, it is assumed that the pixel intensities of the region follow a 
generalized new symmetric distribution. 

 The probability of the density function of the pixel intensities in the whole image is 
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where, K is number of regions, 0 ≤ iα  ≤ 1 are weights such that ∑ iα = 1. iα  is the weight 
associated with ith region of the image, 2( , , , )i i i if z rµ σ is the probability density function of 
the pixel intensities of the ith image region, which is characterized by a generalized new 
symmetric distribution. The probability density function of the pixel intensity is 
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For different values of the parameters the various shapes of probability curves 
associated with the generalized new symmetric distribution are shown in Figure 1. 

 
 
 
 
 
 
 

 
 
 

Figure 1: Probability curves of new symmetric distribution 
 

Estimation of the Model Parameters using EM Algorithm  
In this section, the estimates of the model parameters through EM algorithm are 

obtained. Here, it is assumed that the pixel intensities of the whole image follow a 
generalized new symmetric mixture distribution. The updated equations of the parameters in 
each image region are obtained for the EM algorithm as follows  

 The updated equation of α for (l+1)th iteration is  
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The updated equation of iµ  at (l+1)th iteration is  
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The updated equation of 2
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σ  at (l+1)th iteration is  
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6. Image Segmentation Based on Generalized Laplace Mixture Model  
Jyothirmayi, et al. (2015) have used generalized Laplace mixture distribution for 

image segmentation. The pixel intensities are assumed to follow a generalized Laplace 
distribution given by Srinivasa, Rao et al. (1997). 

The probability density function of the pixel intensity is given by 
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where, –∞<x<∞, –∞<µ<∞, σ>.0 

The probability density function of pixel intensities in whole image is  
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where, k is the number of regions, 𝛼𝛼𝑖𝑖  is the weight which lie in the range of (0,1) such that 
sum of 𝛼𝛼𝑖𝑖  in all clusters is equal to 1. 

 
Estimation of Parameters through EM Algorithm 

The updated equations of the parameters in each image region are obtained for the EM 
algorithms are: 

The updated equation of iα  for (l +1)th iteration is  
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The updated equation of iµ  at (l+1)th iteration is  
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Jyothirmayi, et al. (2016, 2017) have developed and analyzed image segmentation 
methods based on doubly truncated generalized Laplace mixture distribution.  

 

7. Image Segmentation Based on Finite Generalized Gaussian Mixture Model 
Prasad Reddy et al.(2007), Srinivas Yerramalle, et al. (2010a, 2010b)have used 

Generalized Gaussian mixture model for image segmentation. Here, it is assumed that the 
pixel intensities inside each image region are characterized by Generalized Gaussian 
distribution and the entire image is characterized by finite Generalized Gaussian Mixture 
distribution. The probability density function of the Generalized Gaussian distribution is 
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The parameter µ  is the mean, the function ( , )A P σ  is an scaling factor which allows 

that the Variance of Z = 2σ , and ‘P’ is the shape parameter. 
 
Estimation of the Model Parameters through EM Algorithm 

The parameters , ,i i iµ σ α  for i =1,2,…,K are obtained by using the EM algorithm .The 
updating equations of the parameters in each image region are obtained as follows  
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8. Image Segmentation Based on Finite Doubly Truncated Gaussian Mixture Model 

Srinivas.Yerramalle and Srinivasa Rao. K. (2007a, 2007b) have considered an image 
segmentation algorithm by assuming that the pixel intensities of the entire image follow  a 
finite doubly truncated Gaussian Mixture distribution. The doubly Truncated Gaussian 
distribution with probability density function is  
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As a result of this, the pixel intensities in the entire image follow a finite doubly 
Truncated Gaussian distribution with Probability density function of the form  
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Estimation of Model Parameters by EM Algorithm 
The updating equations of the parameters in each image region are as follows: 

For updating kα , we have, 
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For updating ( )l
iµ  we have,  
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For updating 2
kσ , we have, 
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9. Image Segmentation Method Based on Pearsonian Type I Distribution 

Chandra Sekhar et al. (2014) have considered that the pixel intensities of the image 
region follows a Pearson Type I distribution. The probability density function of the pixel 
intensity is  
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1 2 1 2, ,−∞ < < ∞ −∞ < < ∞ ≤ ≤i i i im m a z a  

The entire image is a collection of regions which are characterized by Pearson Type I 
distribution. Here, it is assumed that the pixel intensities of the whole image follows a K–
component mixture of Pearson type I distribution and its probability density function is of the 
form 
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where, K is number of regions,0 ≤ iα  ≤ 1 are weights such that∑ iα = 1 and 1 2 1 2( , , , , )i i i i if z a a m m  
is as given in equation(30). iα  is the weight associated with ith region in the whole image. 



Probability Distribution in Image Segmentation                                                       61 
 

 
Estimation of the Model Parameters by EM Algorithm: 

The updated equation of iα  for ( l +1)th iteration is 
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The updated equation of 1im  at ( l +1)th iteration is  
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The updated equation of 2im  at ( l +1)th iteration is  
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10. Image Segmentation Method Based on Pearsonian Type III Distribution 
 

To model the pixel intensities of the image region Chandra Sekhar, (2015) has 
assumed that the pixel intensities of the region follow a Pearson Type III distribution. The 
probability density function of the pixel intensity is  
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where,Γ is a gamma function. 
 

Here, it is assumed that the pixel intensities of the whole image follow a K–
component mixture of Pearson type III distribution and its probability density function is of 
the form 
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where, K is number of regions ,0 ≤ iα  ≤ 1 are weights such that ∑ iα = 1 and ( | , )i i if z a q  is as 
given in equation (35). iα  is the weight associated with ith region in the whole image. 

 
Estimation of the Model Parameters by EM Algorithm 

The updated equation of iα  for ( l +1)th iteration is  
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The updated equation of ia  for ( l +1)th iteration is  
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 The updated equation of iq  for ( l +1)th iteration is 
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11. Image Segmentation Method Based on Pearsonian Type VI Distribution 
To model the pixel intensities of the animal and human image regions,  Srinivasa Rao. 

K. et al, (2014) have assumed that the pixel intensities of the region follow a Pearson Type 
VI distribution (PTVID). The probability density function of the pixel intensity is  
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Here, it is assumed that the pixel intensities of the whole image follow aK – 
component mixture of Pearson Type VI distribution and its probability density function is of 
the form 
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where, K is number of regions,0 ≤ iα  ≤ 1 are weights such that∑ iα = 1 and 1 1 2( / , , )i i i if z a q q  is 
as given in equation (40). αi is the weight associated with ith region in the whole image.  
 
Estimation of the Model Parameters by EM Algorithm: 

The updated equation of iα  for ( l +1)th iteration is 
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The updated equation of ia  at ( l +1)th iteration is  
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and the updated equation of 1iq  at ( l +1)th iteration is  
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12. Image Segmentation using Compound Normal with Gamma Mixture Model 
   In this section, we present the study of image segmentation using compound normal 
with gamma mixture(CNGM) distribution ( Viziananda row, et al.(2015,2016). In this model, 
the pixel intensities in each image region are assumed to follow Gaussian distribution in 
which the rate parameter( 2−σ ) is random and follows a gamma distribution. Compound 
normal with gamma mixture (CNGM) as given in Norman L. Johnson (2007). The 
corresponding distribution is defined to have a density function as 
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Estimation of the Model Parameters by EM Algorithm 
The updated equations are 



64  K. Srinivasa Rao     
 

 ( ) ( ) ( )1

1

1 / ,+

=

= Θ∑
N

q q g
l i

i
p l x

N
α   (46) 

 ( )

( ) ( )
( )

1 1
1

/ ,
+ =

+

Θ
=
∑

N
q g

i i
q i

l q
l

x p l x

N
µ

α
  (47) 

 ( )
( )

( )( )
( )

( ) ( )

1
1

21

1

1

log 1 / ,

+
+

+

=

= −
 − + Θ 
  

∑

q
q l

l
q

N
q g

iq
i l

Nv
x

p l x
c

α

µ
 (48) 

 ( )
( )( )

( )
( )( ) ( )

1
21 1

1
1

1
/ ,

+

+ +
+

=

+
= − Θ∑

q
Nlq q q g

l i l iq
il

v
c x p l x

N
µ

α
 (49) 

Vizianada Rao et al. (2017) have used doubly truncated compound normal with 
gamma mixture distribution for segmenting dynamic images where the scale parameter of the 
distribution of pixel intensities in the image region is a random variable. 
 

13. Image Segmentation Based on Bi-variate Mixture Distributions  
Image segmentation is one of the most important areas of image retrieval. In colour 

image segmentation the feature vector of each image region is ‘n’ dimensional different from 
grey level image. Rajkumar et al. (2011a, 2011b, 2011c) have developed and analyzed image 
segmentation algorithms using the finite mixture of doubly truncated bi-variate Gaussian 
distribution. The number of image regions in the whole image is determined using the K 
means or hierarchical clustering algorithms. Assuming that a bi-variate feature vector 
(consisting of Hue angle and saturation) of each pixel in the image region follows a doubly 
truncated bi-variate Gaussian distribution, the segmentation algorithm was developed. The 
model parameters are estimated using EM-Algorithm the updated equations of EM-algorithm 
for a finite mixture of doubly truncated Gaussian distribution were derived. Segmentation 
algorithms for colour images were developed by using component maximum likelihood. The 
performances of the algorithms were evaluated through experimentation with five images 
taken from Berkeley image dataset and computing the image segmentation metrics such as 
Global Consistency Error (GCE), Variation of Information (VOI) and Probability Rand Index 
(PRI). The experimentation results show that this algorithm outperforms the existing other 
image segmentation algorithms. 

  Rajkumar et al. (2017) have used doubly truncated bi-variate Gaussian mixture 
distribution for satellite colour image segmentation to recognize water bodies in deep forest 
areas. Srinivasa Rao et al. (2012) have developed and analyzed skin color segmentation using 
finite bi-variate Pearsonian type- IVa mixture model. Jagadesh et al. (2012, 2017) have 
utilized finite bi-variate Pearsonian type mixture models for skin colour segmentation 
.Naveen Kumar et al. (2015a, 2015b, 2016a, 2016b) have studied image texture segmentation 
based on multivariate generalized Gaussian mixture model, under DCT, log DCT, LBP and 
log DCT+ LBP domains. 
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14. Experimental Results 
 In this section we present the performance evaluation of image segmentation method 
given by Seshashayee et al. (2011a).An experiment was conducted with five images taken 
from Berkeley image data set  

(http://www.eecs.berkeley.edu/Research/Projects/CS/Vision/bsds/BSDS300/html). 

The images namely, HORSE, MAN, BIRD, BOAT and TOWER are considered for image 
segmentation. The pixel intensities of the whole image are taken as feature of the image, and 
assumed that they follow a generalized new symmetric mixture distribution. In other words, 
the whole image is collection of K-components and the pixel intensities in each component 
follows a new symmetric distribution. The number of image regions of each image 
considered for experimentation is determined by hierarchical clustering algorithm. 

Using the estimated probability density function and image segmentation algorithm 
given in section 2, the image segmentation is done for the five images under consideration. 
The original and segmented images are shown in Figure 2. 

 
 

ORIGINALIMAGES SEGMENTED IMAGES 

  

  

  

  

  
 

Figure 2: The Original and Segmented Images 
 
Performance Evaluation 

After conducting the experiment with the image segmentation algorithm, its 
performance is studied by obtaining the image segmentation performance measures viz., 
probabilistic rand index (PRI), global consistency error (GCE) and the variation of 
information (VOI). A comparative study of the developed algorithm with the image 
segmentation based on generalized new symmetric mixture model with K-means. The image 
segmentation performance measures PRI, VOI, and GCE are computed for all these methods 
and presented in Table 1.   
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Table 1: SEGMENTATION PERFORMANCE MEASURES 
IMAGE 

 
METHOD 

 
PERFORMANCEMEASURES 
PRI GCE  VOI 

HORSE 

NSMM-K 0.9283 0.1634 1. 8403 
GNSMM-K 0.9374 0.1088 1.8379 
NSMM-H 0.9420 0.1054 1. 8249 

GNSMM-H 0.9596 0.0435 1.7899 

MAN  

NSMM-K 0.9342 0.1734 1.7875 
GNSMM-K 0.9468 0.1226 1. 7707 
NSMM-H 0.9521 0.0839 1.7366 

GNSMM-H 0.9604 0.0499 1.7254 

BIRD 

NSMM-K 0.9140 0.1352 1.7259 
GNSMM-K 0.9229 0.1048 1. 6423 
NSMM-H 0.9432 0.0702 1.6373 

GNSMM-H 0.9649 0.0558 1.6321 

BOAT 

NSMM-K 0.9174 0.6483 1.7542 
GNSMM-K 0.9249 0.2626 1. 7405 
NSMM-H 0.9356 0.1431 1.6980 

GNSMM-H 0.9548 0.1115 1.6587 

TOWER 

NSMM-K 0.9246 0.0981 1.7988 
GNSMM-K 0.9431 0.0820 1. 7752 
NSMM-H 0.9640 0.0137 1.7539 

GNSMM-H 0.9735 0.0135 1. 7491 
 
 From Table 1, it is observed that the segmentation performance measures of the 
proposed segmentation algorithm are closer to the optimal values of PRI, GCE and VOI. 

 

15. Conclusions 
  In this paper we have reviewed some of the image segmentation methods based on 
probability mixture distributions. For gray level images the pixel intensity is considered as 
the feature, which represents the content of the image more effectively. It is customary to 
assume that the pixel intensities in an image region are symmetric and mesokurtic and hence, 
each image region feature is modeled with Gaussian distribution. As a result of it the whole 
image is characterized by mixture of Gaussian distributions. But in many image regions the 
pixel intensities may not be distributed as Gaussian since they may be distributed as 
platykurtic or leptokurtic. In some cases, they may be distributed as asymmetric. It is also to 
be observed that the tail end probabilities of the pixel intensity distribution cannot be 
negligible. Therefore, it is needed to consider the image segmentation methods based on non-
Gaussian mixture distributions. Accordingly, several authors have developed different image 
segmentation methods with different mixture distribution to analyze a variety of images. In 
this article  we have discussed image segmentation methods based on mixture of Gaussian 
distribution, mixture of new symmetric distributions, mixture of generalized new symmetric 
distributions, mixture of generalized Laplace type distributions, mixture of generalized 
Gaussian distributions, mixture of doubly truncated Gaussian distributions, mixture of doubly 
truncated generalized new symmetric distributions, mixture of doubly truncated generalized 
Gaussian distributions, mixture of Pearsonian type II, mixture of Pearsonian type III, mixture 
of Pearsonian IVa, mixture of compound normal with Gamma and truncated compound 
normal with Gamma distributions. The colour image segmentation is developed with a bi-
variate feature vector (Hue and Saturation) using doubly truncated bi-variate Gaussian 
mixture model. The application of image segmentation using probability distributions in 
remote sensing, skin colour segmentation and texture analysis are pointed. Many more image 
segmentation methods based on mixture of probability distributions are also available with 
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specific applications. Recently much emphasis is given to estimate model parameter in 
mixture distributions with EM algorithm. But EM algorithm is sensitive with respect to initial 
estimates of the parameters. To overcome this problem one can estimate the parameters with 
Monte Carlo methods of estimation. It is also possible to develop many more image 
segmentation methods based on mixture of probability distributions. 
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